Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies.
نویسندگان
چکیده
Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.
منابع مشابه
Synthesis, characterization and biocompatibility evaluation of hydroxyapatite - gelatin polyLactic acid ternary nanocomposite
Objective(s): The current study reports the production and biocompatibility evaluation of a ternary nanocomposite consisting of HA, PLA, and gelatin for biomedical application.Materials and Methods: Hydroxyapatite nanopowder (HA: Ca10(PO4)6(OH)2) was produced by burning the bovine cortical bone within the temperature range of 350-450 oC followed by heating in an oven at 800. Synthesis of the te...
متن کاملبررسی سمیت سلولی نانوهیدروکسی آپاتیت بر رده سلولی اپیتلیوم دهان انسان: یک مطالعه آزمایشگاهی
Background: Hydroxyapatite nanoparticles have a more surface contact and solubility than conventional hydroxyapatite. Hydroxynanoparticles enhances the biological and mechanical properties of new regenerated tissues. The hydroxyapatite nanoparticles have received attention as a new and effective osseous graft for using as scaffolds in bone regeneration. The reports on hydroxyapatite nanoparticl...
متن کاملHigh Biological performance of Silicon Substituted Nano Hydroxyapatite Synthesized in Simulated Body Fluid at 37°C
In this work, we report high biological performance of silicon substituted nano hydroxyapatite (nHA) prepared by immersion of calcium phosphate and sodium silicate as precursors in Simulated Body Fluid (SBF) solution for 24, 36, 48 and 72 hrs at 37°C. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform, infrared spectroscopy (FT-IR), X-ray powde...
متن کاملSynthesis of Hydroxyapatite Nanostructure by Hydrothermal Condition for Biomedical Application
In this investigation, hydroxyapatite (HAp) nanostructure with uniform morphologies, controllable size, nano-dispersion and narrow-size distribution in diameter has been synthesized successfully by low-temperature hydrothermal process, and the as-synthesized powders were characterized by energy-dispersive X-ray spectroscopy, scanning electron microscopy, high-resolution transmission elect...
متن کاملHigh Biological performance of Silicon Substituted Nano Hydroxyapatite Synthesized in Simulated Body Fluid at 37°C
In this work, we report high biological performance of silicon substituted nano hydroxyapatite (nHA) prepared by immersion of calcium phosphate and sodium silicate as precursors in Simulated Body Fluid (SBF) solution for 24, 36, 48 and 72 hrs at 37°C. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform, infrared spectroscopy (FT-IR), X-ray powde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Materials science & engineering. C, Materials for biological applications
دوره 68 شماره
صفحات -
تاریخ انتشار 2016